
Abstract – Single-input single-output (SISO) synapse models 
describe the input firing-rate – output firing-rate 
relationship of a motoneuron (MN) pool.  While the MN pool 
is very complex, containing many MNs with a range of 
properties, the SISO model contains very few parameters: a 
presynaptic threshold, a linear postsynaptic gain, and some 
form of output firing-rate saturation.  In this study, the 
parameters of the SISO synapse model are related to the 
patterns of MN recruitment and rate coding in the MN pool.  
Using this general analysis, SISO models are then generated 
for two specific MN pools, one healthy, one unhealthy.  It is 
concluded that the SISO model represents healthy synaptic 
behaviour well, even across large ranges of input firing-rates.  
Estimation of SISO models for unhealthy behaviour, 
however, should be treated with caution. 
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I. INTRODUCTION 
 

Mathematical models of the human neuromuscular system 
are used to explore the neural mechanisms that underlie 
movement [1].  These models seek to describe the 
interaction of muscles, muscle sensors, synapses, control 
from the central nervous system, and biomechanics.  As a 
result the mathematical model dimensionality (i.e. number 
of ‘tuneable’ variables) of these models increases with the 
complexity and size of the system.  To maintain tractable 
analysis and understanding of the system’s equations, 
simplified models of the neuromuscular system’s 
physiology are frequently used. 
 

The monosynaptic reflex arc is an example of a 
complex physiological system that has been represented 
by a mathematical model of low dimensionality.  Fig. 1 
represents a piecewise-linear single-input single-output 
(SISO) model that has been utilised in previous research 
[2,3].  One input firing-rate (IFR) is subjected to a pre-
synaptic threshold (TPRE) and linear post-synaptic gain 
(GLIN) to produce one output firing-rate (OFR).  After IFR 
reaches a value (TSAT), no more increase in OFR is 
observed.  In a mathematical neuromuscular model, this 
OFR will typically activate a muscle model that uses one 
contractile element to represent the motor unit (MU) pool. 

 
The true physiology of the reflex arc involves many pre-
synaptic nerves with individual input firing-rates, both 
excitatory and inhibitory, making many synaptic 
connections to the motoneurons of the motoneuron (MN) 
pool of a muscle [4].  The physiological multiple-input 
multiple-output (MIMO) structure is modelled by the 
SISO system with three parameters TPRE, GLIN, and TSAT. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1.  A simple piecewise-linear SISO synapse model. 

 
This work attempts to ascertain the nature of the 

relationship between the MIMO synaptic physiology 
and the piecewise-linear SISO synapse model in Fig. 
1.  It will also highlight possible pitfalls in the 
estimation of the piecewise-linear SISO synapse 
model. 
 

II. METHODOLOGY 

 
A single MN’s synaptic behaviour will be 

mathematically described in a general sense.  The 
multiple input and multiple output firing-rates of the 
MN pool will be reduced to a single input and a single 
output firing-rate.  The relationship between these 
single input and output firing-rates of the MN pool will 
be related to MN recruitment and rate coding.  
Piecewise-linear SISO synapse models, such as in Fig. 
1, will be then fitted to the input-output relationship of 
one healthy and one unhealthy MN pool. 

 
A) The single MN pool input firing-rate and the MN 

pool synapses 
 

The multiple excitatory inputs to the MN pool are 
first averaged together to give one input firing-rate, 
IFR.   Taking into account the eventual saturation of 
the synapse and assuming that the pre-synaptic IFR is 
linearly related to excitatory post-synaptic current by a 
factor ki, the output firing-rate of the ith MN, OFRi, is: 
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where Pthresi is the post-synaptic current threshold, 
Pmaxi is the maximum effective current (beyond 
which no further increases in OFRi occur), GMNi(kiIFR) 
is the MN’s input current – output firing-rate gain, 
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Ethresi is the initial firing-rate of the MN on recruitment, 
and Emaxi is the maximum OFRi for the ith MN. u(•) is the 
unit-step function. 
 
B) The single MN pool output firing-rate 
 

The single output firing-rate of the MN pool, OFR, 
must simultaneously represent the firing-rate of many 
MNs.  As piecewise-linear SISO synapse models typically 
activate muscle models designed from single fibre 
experiments [1], the OFR will be determined by the 
average firing-rate per muscle fibre.  Estimating the 
number of muscle fibres per MU as the ratio of the ith MU 
tetanic force, fmaxi, to the total tetanic muscle force, 
FMAX, one obtains: 
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Filling in for OFRi (1) and using experimental values for 
Pthresi, Pmaxi, GMNi(kiIFR), Ethresi, Emaxi, and fmaxi one 
can produce a plot of IFR against OFR from which a 
piecewise-linear SISO synapse model can be generated. 
 
C) Relating MU behaviours to SISO models 
 

1)  The threshold parameters, TLIN and TSAT of the 
piecewise-linear model can be readily related to the IFR 
that activates the first MN, i.e. min(Pthresi/ki) and the IFR 
at which the last MN reaches its maximum output firing-
rate, i.e. max(Pmaxi/ki). 

 
2)  One can differentiate (2) with respect to IFR to 

determine an expression for the ‘gain’ between the single 
input firing-rate and the single output firing-rate of the 
MN pool, GPOOL: 
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Noting that Eq. 1 is continuous for all i, and assuming all 
Pthresi are different, GPOOL expands to following 
expression: 
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where ‘MNs in active region’ is defined as all the MNs 
activated but not yet firing at their maximum firing-rate, 
and �(•) is a dirac-delta function. 
 

This expression for GPOOL (3) contains two terms, 
the first describing the effect of MN recruitment, the 
second the effect of MN rate coding.  By integrating 
these two terms individually with respect to IFR it is 
possible to see the relative contribution of these two 
physiological principles to the lumped 
parameterisation of ‘post-synaptic gain’ in piecewise-
linear models. 
 
D) Fitting the piecewise-linear models 
 

If the OFR at IFR = TSAT is known, the piecewise-
linear SISO model’s gain, GLIN, can be derived using 
TPRE and ignoring (3).  The accuracy of this method 
relies on little variation in GPOOL when IFR lies 
between TPRE and TSAT.  Indeed, better fits of the 
piecewise-linear model can be achieved if accuracy of 
the upper threshold TSAT is sacrificed and (3) is used 
instead.  TSAT can be argued to be the least important 
parameter.  It is of little functional importance as it 
only plays a part in neuromuscular dynamics at high 
levels of activation when muscle force output is also 
becoming saturated.  In this work, therefore, the 
piecewise-linear SISO model parameters will be 
visually estimated from the plot of IFR against OFR 
(Eq. 2), with emphasis on the accuracy of TPRE and 
GLIN to the detriment of TSAT accuracy. 
 

III. RESULTS 

 
Healthy and unhealthy MN pool synaptic 

behaviours were modelled.  The MN pool was based 
on data from the cat medial gastrocnemius, assumed to 
contain 280 MUs [5].  The relationship between IFR 
and a MN’s post-synaptic current, represented by the 
ki, was set to 10-9 A/(pulses per second (pps)) for all 
MNs. 
  
A) Healthy MN pool 
 

In Heckman and Binder [5], every MN in the MN 
pool was assigned an individual Pthresi, Pmaxi, 
Ethresi, Emaxi, and fmaxi based on experimental data 
from the literature.  A piecewise-linear expression with 
two linear regions defined by two thresholds (Pthres1i 
and Pthres2i) was used to represent the ith MN’s input-
output gain, GMNi.  Fig. 2 shows a plot of IFR against 
the resulting OFR (3), along with the individual 
contributions to the IFR-OFR relationship due to the 
MN recruitment and rate coding), and the visual 
estimation of the piecewise-linear SISO model. 

 
B) Unhealthy MN pool 

 
After central nervous system trauma, all MNs in 

the affected muscles have often been reported to have 
smaller presynaptic recruitment thresholds and a 
reduced range of values across the MN pool.  This 



behaviour is frequently paralleled with reduced initial 
firing-rates, a reduction in rate coding, and lower 
maximum firing-rates of the MNs [6].  The resulting 
modifications to the healthy MN pool synaptic behaviour 
are detailed in Table I.  The healthy MN pool parameters 
are given for comparison.  Fig. 3 presents results for the 
unhealthy MN pool in a similar fashion to Fig. 2.  Figure 4 
shows two alternative estimations of the piecewise-linear 
SISO model from the IFR-OFR relationship resulting from 
the unhealthy synaptic behaviours. 
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Figure 2.  The IFR-OFR relationship for the healthy MN pool, along with 

the contribution of MN recruitment and rate coding.  The piecewise-
linear SISO model (heavier dash-dot line) was visually estimated from 

the IFR-OFR relationship. 
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Figure 3.  The IFR-OFR relationship for the unhealthy MN pool, along 
with the contribution of recruitment and rate coding.  The piecewise-

linear SISO model (heavier dash-dot line) was visually estimated from 
the IFR-OFR relationship. 

TABLE I 
HEALTHY AND UNHEALTHY MN POOL PARAMETERS 

 
Values (in ranges where appropriate) and Units Parameter 

Healthy MN Pool Unhealthy MN Pool 

Ethresi 
(initial firing-rate) 

8 – 17.5 pps 6 – 12 pps 

Emaxi 
(maximum firing-rate) 

22 – 70 pps 12 – 36 pps 

GMNi input-output gain 
for ‘active region’ 1 

1.5 pps/nA 3.0 pps/nA 

GMNi input-output gain 
for ‘active region’ 2 

0.75 pps/nA 1.5 pps/nA 

Pthres1i 
(presynaptic threshold 

for ‘active region’ 1) 
 

3.5 – 40 nA 2 – 12 nA 

Pthres2i 
(presynaptic threshold 

for ‘active region’ 2) 
 

14.8 – 75.4 nA 8 – 40 nA 
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Figure 4.  Two other piecewise-linear SISO models representing 
the unhealthy MN pool (long dash-dot and dash dot).  The dashed 
vertical lines define the two thresholds, TPRE and TLIN, for model A, 

the dotted vertical lines represent the thresholds for model B. 

 
 

IV. DISCUSSION 
 

A) The IFR-OFR relationship interpreted with 
respect to MN recruitment and rate-coding 

 
The IFR-OFR relationship, defined by GPOOL(IFR), 

has been shown to be dependant on both MN 
recruitment and rate-coding.  The dirac-delta functions 
in the expression for GPOOL (3) indicate that increases 
in OFR due to MN recruitment are controlled by small 
increments in IFR.  In contract, the increases in GPOOL 
due to MU rate coding occur over much larger IFR 
ranges (Fig. 2). 

 



It should be noted that when the last MU is recruited 
the muscle produces around 70% of maximum muscle 
force [4].  Therefore the further increases in GPOOL after 
this point are not as functionally significant as one might 
infer from examination of Fig. 2.  Indeed MU firing-rates 
rarely reach the value required for maximum muscle force 
in vivo [7]. 
 
B) Piecewise-linear SISO model estimation from IFR-

OFR relationship derived from MN pool data 
 

Fig. 2 shows the piecewise-linear SISO synapse model 
fitted to the IFR-OFR relationship for the healthy MN 
pool.  The linear approximation is seen to be quite 
reasonable, even over large ranges of IFR.  It only loses 
accuracy at high OFR, which has been argued to be of 
limited functional relevance.  The healthy distributions of 
MN properties in the MN pool have yielded this result.  
The MN recruitment and rate coding appear to be 
balanced in such a manner that the rise in GPOOL due to 
MN recruitment at low IFR offsets the lower contribution 
of MN firing-rate increases at low IFR. 

 
The unhealthy MN pool ‘active region’ in Fig. 3, is 

less linear (due to the disruption in the balance between 
MU recruitment and rate coding) and consequently the 
piecewise-linear fit does a poorer job in mimicking the 
MU pool’s IFR – OFR relationship.  The piecewise-linear 
SISO model does still predict, however, a lowering of the 
presynaptic threshold and a higher post-synaptic gain, 
both of which would be expected after central nervous 
system trauma [2]. 
 
C) Piecewise-linear SISO model estimation from IFR-

OFR relationship derived from clinical experiment 
 

The above estimations of the piecewise-linear SISO 
model rely on detailed knowledge of the MN pool’s 
properties.  In a clinical situation, such information is 
unavailable and research is performed to evaluate it [2].  
As shall be seen, however, very different descriptions of a 
subject’s injury can be concluded depending on data 
gathered. 

 
In Fig. 4 the integrated GPOOL from the unhealthy MN 

pool is presented with two possible piecewise-linear SISO 
model fits.  We shall assume that the MN pool under 
examination is always tonically active due to an upper 
motoneuron disorder, e.g. cerebral palsy, and changes in 
IFR are directly related to afferent firing changes, e.g. 
muscle spindle activation during stretch. 

 
With low tonic muscle activation, the synaptic reflexes 

would be best characterised by the piecewise-linear SISO 
model A.  Under higher levels of tonic activation, the 
piecewise-linear SISO model B would be more accurate.  
Both models appear to be clinically reasonable.  
Piecewise-linear model A has predicted a slightly lower 

presynaptic threshold, TPRE_A, and a higher 
postsynaptic gain, GLIN_A.  The tonic activation of the 
muscle would be assumed to be spindle-driven as a 
reduction in the spindle mediated IFR would reduce 
the OFR to zero. With the piecewise-linear model B, 
however, GLIN_B has remained largely unchanged from 
the healthy MN pool synaptic behaviour, but now a 
larger decrease in TPRE_B is predicted.  The negative 
value implies that even if the afferent firing dropped to 
zero, the muscle would remain active, i.e. that the tonic 
muscle activation is centrally mediated.  Therefore, 
depending on the part of the IFR-OFR curve to which 
the piecewise-linear SISO model is fit, different neural 
behaviours are predicted.  
 

V. CONCLUSION 
 
A piecewise-linear SISO synapse model was 

derived from a generalised analysis of MN pool 
behaviour.  Using data from the literature the piece-
wise linear model was seen to be a good, simple 
approximation to the overall MIMO healthy MN pool 
behaviour. This holds even for large ranges in input 
firing-rate.  Care must be taken, however, in 
experimental estimation of these models, particularly 
when the relative contributions of MU recruitment and 
MU rate-coding to muscle activations have been 
disrupted. 
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